
MapReduce



Plan of presentation

• Why do we need MapReduce
• Types of systems (monolithic vs distributed) 
• The power of MapReduce
• Map
• Shuffle
• Reduce
• Typical operations of MapReduce
• Demo
• How to MapReduce
• Summary



Why do we need MapReduce



Two ways to build a system

Monolithic 

Distributed





Monolithic – only option until late 80s
• Advantage – easy to use
• Disadvantages – expensive; not scalable
Distributed:
• Advantage – cheap,linear scale
• Disadvantages - partitioning; fault tolerance and recovery (what if some node goes down); parallel processing 

(that is where MapReduce is used) 



The power of MapReduce

Abstraction 

Parallelization



Map step



Reduce step



Shuffle step



Why Shuffle and not Sort?

SHUFFLE SORT

O(N) O(N log(N))

Big O complexity



Why Shuffle and not Sort?

Items O(N) O(N LogN) Overhead

10 10 33 3.3

1 000 1 000 9 965 9.9

1 000 000 1 000 000 19 931 568 19.9

1 000 000 000 1 000 000 000 29 897 352 854 29.9



Typical operations for MapReduce

- Filtering
- Counting
- Ranking (like to 50%, bottom 5%)
- Min/Max/Avg
- Any other task that can be done in two stages (split 

into independent pieces and combine intermediate 
results) 



Profile views











MapReduce pattern



How to MapReduce

Answer 2 questions:
- What are the {key; value} pair you 

need to setup for each step
- How the values should be combined









Summary

It is complicated to always think about the parallel data processing and manually 
define the rules of how it should be done, so there is plenty of frameworks that add a 
level of abstraction so you would only need to think about what work should be done 
and those frameworks are built using MapReduce (example Hadoop) concept.

To solve your problem in a MapReduce way you need to:
• Define the {key; value;} on each step
• Choose the Reduce operation




